DNA hypomethylation of CBS promoter induced by folate deficiency is a potential noninvasive circulating biomarker for colorectal adenocarcinomas
نویسندگان
چکیده
Aberrant DNA methylation patterns, which induced by folate deficiency, play important roles in tumorigenesis of colorectal cancer (CRC). Some DNA methylation alterations can also be detected in cell-free DNA (cfDNA) of patients' plasma, making cfDNA an ideal noninvasive circulating biomarker. However, exact DNA methylation alterations induced by folate deficiency in tumorigenesis of CRC and exact potential circulating cfDNA methylation biomarker are still unclear. Therefore, DNA methylation patterns of the normal human colon mucosal epithelial cell line (NCM460), cultured with normal or low folate content, were screened and the DNA hypomethylation of cystathionine-beta-synthase (CBS) promoter was further validated in vitro and vivo. Then, the correlation analysis between folate level, DNA methylation alteration in promoter and expression of CBS was carried out in vitro and vivo. Further, the methylation patterns of CBS promoter in plasma cfDNA were detected and statistically correlated with pathological parameters and clinical outcome. Our study showed that DNA hypomethylation in CBS promoter, induced by folate deficiency, would lead to up-regulation of CBS both in vitro and vivo. Patients with cfDNA hypomethylation of CBS promoter in plasma were correlated with high tumor stage and poor clinical outcome. In addition, cfDNA hypomethylation of CBS promoter in plasma was shown to be an independent prognostic factor for recurrence and cancer-related death in CRC. Our results indicated that DNA hypomethylation of CBS promoter induced by folate deficiency could serve as a potential noninvasive circulating biomarker and may be helpful in developing more effective prognostic markers for CRC.
منابع مشابه
Epigenetic changes in colorectal cancer
Epigenetic changes frequently occur in human colorectal cancer. Genomic global hypomethylation, gene promoter region hypermethylation, histone modifications, and alteration of miRNA patterns are major epigenetic changes in colorectal cancer. Loss of imprinting(LOI) is associated with colorectal neoplasia. Folate deficiency may cause colorectal carcinogenesis by inducing gene-specific hypermethy...
متن کاملFolate deficiency exacerbates apoptosis by inducing hypomethylation and resultant overexpression of DR4 together with altering DNMTs in Alzheimer's disease.
This study was to evaluate patterns of gene expression and promoter methylation of DR4 from peripheral circulating blood lymphocytes of AD patients and folate-deficiency medium cultured neuroblast cells, and also expression levels of DNMT1, DNMT3a, and MECP2. Blood samples of 25 pairs of AD patients and age- and sex-matched controls were collected. SH-SY5Y cells were cultured with folate-defici...
متن کاملFrequent Epigenetic Silencing of the Folate-Metabolising Gene Cystathionine-Beta-Synthase in Gastrointestinal Cancer
BACKGROUND Both gastric and colorectal cancers (CRC) are the most frequently occurring malignancies worldwide with the overall survival of these patients remains unsatisfied. Identification of tumor suppressor genes (TSG) silenced by promoter CpG methylation uncovers mechanisms of tumorigenesis and identifies new epigenetic biomarkers for early cancer detection and prognosis assessment. Cystath...
متن کاملFolate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer?
Epidemiological, clinical, and animal studies collectively indicate that dietary folate intake and blood folate levels are inversely associated with colorectal cancer risk. Folate plays an essential role in one-carbon transfer involving remethylation of homocysteine to methionine, which is a precursor of S-adenosylmethionine, the primary methyl group donor for most biological methylations. DNA ...
متن کاملThe Impact of Long-term Exposure to Low Levels of Inorganic Arsenic on the Hypomethylation of SEPT9 Promoter in Epithelial-Mesenchymal Transformed Colorectal Cancer Cell Lines
Inorganic arsenicals are worldwide environmental contaminants that affect molecular characteristics in biological systems and lead to genomic and epigenomic instability as well as epithelial mesenchymal transition (EMT). In this study, we aimed to investigate whether low levels of sodium arsenite (iAsIII) can influence EMT and genomic instability through microsatellite analysis. We have also de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017